「bzoj3684」 大朋友与多叉树

当年这题和黄队一起看过,但是没做,现在只剩我自己了(结果黄队一人独自把这题 A 了

Description

我们的大朋友很喜欢计算机科学,而且尤其喜欢多叉树。对于一棵带有正整数点权的有根多叉树,如果它满足这样的性质,我们的大朋友就会将其称作神犇的:点权为 $1$ 的结点是叶子结点;对于任一点权大于 $1$ 的结点 $u$,$u$ 的孩子数目$deg[u]$ 属于集合 $D$ ,且 $u$ 的点权等于这些孩子结点的点权之和。
给出一个整数 $s$,你能求出根节点权值为 $s$ 的神犇多叉树的个数吗?请参照样例以更好的理解什么样的两棵多叉树会被视为不同的。
我们只需要知道答案关于 $950009857$( $453\times2^{21}+1$,一个质数)取模后的值。

Solution

这个题也是个裸题8,但是是第一次做,于是就写了一篇博客。

首先考虑一个暴力的 DP :$f_i$ 表示叶子节点数为 $i$ 的合法多叉树数量,转移时枚举自己有几个儿子,做一个类似背包的转移 :$f_i = \sum_{j\in D}\left((\prod_{k=1}^jf_{son_i})\times[\sum_{k=1}^json_i = i]\right)$,因为一个点自己就是叶子,所以 $f_1 = 1$。

我们令 $F(x)$ 为 $f$ 的生成函数,根据上面那个式子,我们可以写出 $F(x) = \sum_{i\in D}F^i(x) + x$ ,简单移一下项,得到 $F(x) - \sum_{i\in D} F^i(x) = x$ ,毛估估一下,$F(x)$ 的复合逆 $G(x)$ 就是 $x - \sum_{i\in D} x^i$,题目要我们求的东西是 $[x^s]F(x)$,套一个拉格朗日反演上去,$[x^n]F(x) = \frac1n[x^{-1}]\left( \frac{1}{G(x)} \right)^n$ ,大概就做完了。

code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#include <map>
#include <set>
#include <ctime>
#include <queue>
#include <stack>
#include <cmath>
#include <vector>
#include <bitset>
#include <cstdio>
#include <cctype>
#include <string>
#include <numeric>
#include <cstring>
#include <cassert>
#include <climits>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std ;
#define rep(i, a, b) for (register int i = (a); i <= (b); ++i)
#define per(i, a, b) for (register int i = (a); i >= (b); --i)
#define loop(it, v) for (auto it = v.begin(); it != v.end(); it++)
#define cont(i, x) for (register int i = head[x]; i; i = edge[i].nex)
#define clr(a) memset(a, 0, sizeof(a))
#define ass(a, cnt) memset(a, cnt, sizeof(a))
#define cop(a, b) memcpy(a, b, sizeof(a))
#define lowbit(x) (x & -x)
#define all(x) x.begin(), x.end()
#define SC(t, x) static_cast <t> (x)
#define ub upper_bound
#define lb lower_bound
#define pqueue priority_queue
#define mp make_pair
#define pb push_back
#define pof pop_front
#define pob pop_back
#define fi first
#define se second
#define y1 y1_
#define Pi acos(-1.0)
#define iv inline void
#define enter putchar('\n')
#define siz(x) ((int)x.size())
#define file(x) freopen(x".in", "r", stdin),freopen(x".out", "w", stdout)
typedef double db ;
typedef long long ll ;
typedef unsigned long long ull ;
typedef pair <int, int> pii ;
typedef vector <int> vi ;
typedef vector <pii> vii ;
typedef queue <int> qi ;
typedef queue <pii> qii ;
typedef set <int> si ;
typedef map <int, int> mii ;
typedef map <string, int> msi ;
const int maxn = 1e6 + 100 ;
const int inf = 0x3f3f3f3f ;
const int iinf = 1 << 30 ;
const ll linf = 2e18 ;
const int mod = 950009857 ;
const double eps = 1e-5 ;
template <class T = ll> T read()
{
T f = 1, a = 0;
char ch = getchar() ;
while (!isdigit(ch)) { if (ch == '-') f = -1 ; ch = getchar() ; }
while (isdigit(ch)) { a = ((a << 3) + (a << 1) + ch - '0') % mod; ch = getchar() ; }
return a * f ;
}

namespace polynomial
{
inline int power(int a, int b)
{
register int ret = 1;
for(; b; b >>= 1, a = 1ll * a * a % mod) if(b & 1) ret = 1ll * ret * a % mod;
return ret;
}

int rev[maxn], g = 7, gg[2][maxn], lim_inv[maxn];

inline void init()
{
for(register int j = 1; j < (maxn >> 1); j <<= 1)
{
register int g1 = power(g, (mod - 1) / j), g0 = power(g1, mod - 2);
lim_inv[j] = power(j, mod - 2);
gg[0][j] = 1, gg[1][j] = 1;
rep(i, 1, j - 1) gg[0][j + i] = 1ll * gg[0][j + i - 1] * g0 % mod, gg[1][j + i] = 1ll * gg[1][j + i - 1] * g1 % mod;
}
}

inline void ntt(int *a, int lim, int opt)
{
rep(i, 0, lim - 1) if(i < rev[i]) swap(a[i], a[rev[i]]);
for(register int i = 1; i < lim; i <<= 1)
for(register int j = 0; j < lim; j += (i << 1))
for(register int k = 0; k < i; ++ k)
{
register int x = a[j + k], y = 1ll * a[i + j + k] * gg[opt][(i << 1) + k] % mod;
a[j + k] = (x + y) % mod;
a[i + j + k] = (x + mod - y) % mod;
}
if(!opt) rep(i, 0, lim - 1) a[i] = 1ll * a[i] * lim_inv[lim] % mod;
}

inline void mul(int *a, int *b, int len)
{
register int lim = 1;
while(lim < (len << 1)) lim <<= 1;
rep(i, 0, lim - 1) rev[i] = (rev[i >> 1] >> 1) + (i & 1) * (lim >> 1);
ntt(a, lim, 1), ntt(b, lim, 1);
rep(i, 0, lim - 1) a[i] = 1ll * a[i] * b[i] % mod;
ntt(a, lim, 0);
}

inline void poly_mul(int *a, int *b, int len)
{
register int lim = 1;
while(lim < (len << 1)) lim <<= 1;
rep(i, 0, lim - 1) rev[i] = (rev[i >> 1] >> 1) + (i & 1) * (lim >> 1);
// puts("poly : mul");
// rep(i, 0, lim - 1) printf("%d %d\n", a[i], b[i]);
ntt(a, lim, 1), ntt(b, lim, 1);
rep(i, 0, lim - 1) a[i] = 1ll * a[i] * b[i] % mod;
ntt(a, lim, 0);
rep(i, len, lim) a[i] = b[i] = 0;
}

int ta[maxn], tb[maxn];

void dac_mul(int l, int r, int *f, int *g)
{
if(l == r) return ;
int mid = (l + r) >> 1, len = r - l + 1, lim = 1;
dac_mul(l, mid, f, g);
while(lim < (len << 1)) lim <<= 1;
rep(i, 0, lim - 1) ta[i] = tb[i] = 0;
rep(i, 0, mid - l) ta[i] = f[i + l];
rep(i, 0, r - l - 1) tb[i] = g[i + 1];
mul(ta, tb, len);
rep(i, mid + 1, r) (f[i] += ta[i - l - 1]) %= mod;
dac_mul(mid + 1, r, f, g);
}

inline int num_plus(int &a, int b)
{
return (a += b) >= mod ? a -= mod : a;
}

inline void minus(int *f, int *g, int len)
{
rep(i, 0, len - 1) num_plus(f[i], mod - g[i]);
return ;
}

inline void plus(int *f, int *g, int len)
{
rep(i, 0, len - 1) num_plus(f[i], g[i]);
return ;
}

inline void num_mul(int *f, int x, int len)
{
rep(i, 0, len - 1) f[i] = 1ll * f[i] * x % mod;
return ;
}

inline void intergral(int *f, int len)
{
per(i, len, 1) f[i] = 1ll * f[i - 1] * power(i, mod - 2) % mod;
f[0] = 0;
}

inline void derivative(int *f, int len)
{
rep(i, 0, len - 1) f[i] = 1ll * f[i + 1] * (i + 1) % mod;
return ;
}

int inv_ta[maxn], inv_tb[maxn];

void inversion(int *f, int *a, int len)
{
rep(i, 0, len << 1) f[i] = 0;
if(len == 1) return (void)(f[0] = power(a[0], mod - 2));
inversion(f, a, (len + 1) >> 1);
rep(i, 0, len - 1) inv_ta[i] = inv_tb[i] = f[i], (f[i] *= 2) %= mod;
poly_mul(inv_ta, inv_tb, len);
rep(i, 0, len - 1) inv_tb[i] = a[i];
poly_mul(inv_ta, inv_tb, len), minus(f, inv_ta, len);
rep(i, 0, len - 1) inv_ta[i] = inv_tb[i] = 0;
}

int sqrt_ta[maxn], sqrt_tb[maxn], sqrt_tc[maxn];

void poly_sqrt(int *f, int *a, int len)
{
rep(i, 0, len << 1) f[i] = 0;
if(len == 1) return (void)(f[0] = 1);
poly_sqrt(f, a, (len + 1) >> 1);
rep(i, 0, len - 1) sqrt_ta[i] = sqrt_tb[i] = f[i];
poly_mul(sqrt_ta, sqrt_tb, len), plus(sqrt_ta, a, len);
rep(i, 0, len - 1) sqrt_tb[i] = f[i] * 2 % mod, sqrt_tc[i] = 0;
inversion(sqrt_tc, sqrt_tb, len), poly_mul(sqrt_ta, sqrt_tc, len);
rep(i, 0, len - 1) f[i] = sqrt_ta[i], sqrt_ta[i] = sqrt_tb[i] = sqrt_tc[i] = 0;
}

int der[maxn], ln_inv[maxn];

void poly_ln(int *f, int len)
{
rep(i, 0, len - 1) der[i] = ln_inv[i] = f[i];
derivative(der, len), inversion(f, ln_inv, len), poly_mul(f, der, len), intergral(f, len);
rep(i, 0, len - 1) der[i] = ln_inv[i] = 0;

}

int exp_ln[maxn], exp_mul[maxn];

void poly_exp(int *f, int *a, int len)
{
rep(i, 0, len << 1) f[i] = 0;
if(len == 1) return (void)(f[0] = 1);
poly_exp(f, a, (len + 1) >> 1);
rep(i, 0, len - 1) exp_ln[i] = f[i];
poly_ln(exp_ln, len);
exp_mul[0] = 1, minus(exp_mul, exp_ln, len), plus(exp_mul, a, len), poly_mul(f, exp_mul, len);
rep(i, 0, len - 1) exp_ln[i] = exp_mul[i] = 0;
}

int prod[maxn];

void poly_pow(int *f, int b, int len)
{
poly_ln(f, len), num_mul(f, b, len);
rep(i, 0, len - 1) prod[i] = f[i];
poly_exp(f, prod, len);
rep(i, 0, len - 1) prod[i] = 0;
}

inline void poly_reverse(int *a, int len)
{
reverse(a, a + len);
}

int div_inv[maxn];

inline void poly_div(int *f, int *a, int *b, int len_a, int len_b)
{
register int len = len_a - len_b + 1;
if(len < 1) return ;
poly_reverse(a, len_a), poly_reverse(b, len_b), inversion(div_inv, b, len);
rep(i, 0, len - 1) f[i] = a[i];
poly_mul(f, div_inv, len), poly_reverse(f, len), poly_reverse(a, len_a), poly_reverse(b, len_b);
rep(i, 0, len - 1) div_inv[i] = 0;
}

int mod_div[maxn];

inline void poly_mod(int *f, int *a, int *b, int len_a, int len_b)
{
rep(i, 0, len_b - 1) f[i] = b[i];
poly_div(mod_div, a, b, len_a, len_b);
poly_mul(f, mod_div, len_a), num_mul(f, mod - 1, len_a), plus(f, a, len_a);
rep(i, 0, len_a) mod_div[i] = 0;
}

int mpe_mul[maxn * 10], mpe_begin[maxn], cnt, mpe_tmp[maxn];

void poly_dac_mul(int *a, int l, int r, int tot)
{
if(l == r)
{
mpe_begin[tot] = ++ cnt;
mpe_mul[cnt] = mod - a[l], mpe_mul[++ cnt] = 1;
return ;
}
register int mid = (l + r) >> 1, len = r - l + 2;
poly_dac_mul(a, l, mid, tot << 1), poly_dac_mul(a, mid + 1, r, tot << 1 | 1);
mpe_mul[mpe_begin[tot] = ++ cnt] = 0;
rep(i, 1, len - 1) mpe_mul[++ cnt] = 0;
rep(i, 0, mid - l + 1) mpe_mul[mpe_begin[tot] + i] = mpe_mul[mpe_begin[tot << 1] + i];
rep(i, 0, r - mid) mpe_tmp[i] = mpe_mul[mpe_begin[tot << 1 | 1] + i];
poly_mul(mpe_mul + mpe_begin[tot], mpe_tmp, len);
rep(i, 0, len - 1) mpe_tmp[i] = 0;
}

inline int poly_spe(int *f, int len, int point)
{
register int ret = 0, base = 1;
rep(i, 0, len - 1) num_plus(ret, 1ll * base * f[i] % mod), base = 1ll * base * point % mod;
return ret;
}

int mpe_r[maxn * 10], mpe_r_begin[maxn];

const int shit = 256;

void poly_mpe_done(int *f, int *a, int *b, int len, int l, int r, int tot)
{
register int last = len;
len = r - l + 1;
mpe_r[mpe_r_begin[tot] = ++ cnt] = 0;
rep(i, 1, len - 1) mpe_r[++ cnt] = 0;
poly_mod(mpe_r + mpe_r_begin[tot], a, mpe_mul + mpe_begin[tot], last, len + 1);
if(r - l + 1 <= shit)
{
rep(i, l, r) f[i] = poly_spe(mpe_r + mpe_r_begin[tot], len, b[i]);
return ;
}
if(l == r) return (void)(f[l] = mpe_r[mpe_r_begin[tot]]);
rep(i, 0, len - 1) a[i] = mpe_r[mpe_r_begin[tot] + i];
register int mid = (l + r) >> 1;
poly_mpe_done(f, a, b, len, l, mid, tot << 1);
rep(i, 0, len - 1) a[i] = mpe_r[mpe_r_begin[tot] + i];
poly_mpe_done(f, a, b, len, mid + 1, r, tot << 1 | 1);
}

int mpe_tmp_a[maxn];



inline void poly_mpe(int *f, int *a, int *b, int len_a, int len_b)
{
register int flag = 0;
if(!cnt) flag = 1;
if(flag) poly_dac_mul(b, 1, len_b, 1);
cnt = 0;
rep(i, 0, len_a - 1) mpe_tmp_a[i] = a[i];
poly_mpe_done(f, mpe_tmp_a, b, len_a, 1, len_b, 1), cnt = 0;
clr(mpe_r);
if(flag) clr(mpe_mul);
rep(i, 0, len_a - 1) mpe_tmp_a[i] = 0;
}

int mpi_mul[maxn * 10], mpi_tmp[maxn], mpi_l[maxn];

int mpi_g[maxn], mpi_p[maxn];

inline void poly_mpi_done(int *f, int *x, int *y, int l, int r, int tot)
{
if(l == r) return (void)(f[0] = 1ll * power(mpi_p[l], mod - 2) * y[l] % mod);
register int mid = (l + r) >> 1, llen = mid - l + 1, rlen = r - mid, len = r - l + 1;
poly_mpi_done(f, x, y, l, mid, tot << 1);
rep(i, 0, llen - 1) mpi_mul[i + mpe_begin[tot]] = f[i], f[i] = 0;
poly_mpi_done(f, x, y, mid + 1, r, tot << 1 | 1);
rep(i, 0, llen) mpi_tmp[i] = mpe_mul[i + mpe_begin[tot << 1]];
poly_mul(f, mpi_tmp, len);
rep(i, 0, len - 1) mpi_tmp[i] = 0;
rep(i, 0, rlen) mpi_tmp[i] = mpe_mul[i + mpe_begin[tot << 1 | 1]];
rep(i, 0, llen - 1) mpi_l[i] = mpi_mul[i + mpe_begin[tot]];
poly_mul(mpi_l, mpi_tmp, len);
rep(i, 0, len - 1) mpi_tmp[i] = 0;
plus(f, mpi_l, len);
rep(i, 0, len - 1) mpi_l[i] = mpi_mul[i + mpe_begin[tot]] = 0;
}

inline void poly_mpi(int *f, int *x, int *y, int len)
{
poly_dac_mul(x, 1, len, 1);
rep(i, 0, len) mpi_g[i] = mpe_mul[i + mpe_begin[1]];
derivative(mpi_g, len + 1), poly_mpe(mpi_p, mpi_g, x, len, len), poly_mpi_done(f, x, y, 1, len, 1);
rep(i, 0, len) mpi_g[i] = mpi_p[i] = 0;
}
}

using polynomial :: inversion;
using polynomial :: poly_pow;
using polynomial :: power;
using polynomial :: init;

int n, m;

int g[maxn], f[maxn];

signed main()
{
init();
n = read(), m = read();
g[0] = 1;
rep(i, 1, m) g[read() - 1] = mod - 1;
inversion(f, g, n), poly_pow(f, n, n);
printf("%lld\n", 1ll * power(n, mod - 2) * f[n - 1] % mod);
return 0;
}
  • Copyright: Copyright is owned by the author. For commercial reprints, please contact the author for authorization. For non-commercial reprints, please indicate the source.
  • Copyrights © 2020-2022 naitir
  • Visitors: | Views:

请我喝杯咖啡吧~

支付宝
微信